If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2-35n-342=0
a = 1; b = -35; c = -342;
Δ = b2-4ac
Δ = -352-4·1·(-342)
Δ = 2593
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-35)-\sqrt{2593}}{2*1}=\frac{35-\sqrt{2593}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-35)+\sqrt{2593}}{2*1}=\frac{35+\sqrt{2593}}{2} $
| -13=n/7 | | -9x-44=-2(x-6) | | 4x+17÷18-13x-÷17x-32+x÷3=7x÷12-x+16÷36 | | -4=-8w | | 0=10(r–4) | | n^2-37n+342=0 | | 9x-22=5 | | X2-3x-61=0 | | 2/3+1/3=y | | 3(2x-1)=-5x+14 | | 12x=134 | | 4x-x/3=11 | | 300+32y=40 | | 3(x+4)/4=4x-2 | | 2x+6x+(x-9)=180 | | (5x-20)+(x+50)=180 | | (5x-20)+(x+50)=90 | | 3x-184=4x+18 | | x.3x-184=4x+18 | | 1/4(x+5)^2−1=3 | | 4u−21=19 | | d+(d-5)=33 | | 76=4n | | 9x+9=252 | | 8x+8=216 | | 7x+7=182 | | 98x+1=2059 | | 45x+100=455 | | 6(6-d)=9(d-4) | | 21x+45=423 | | 9x+20=164 | | 14x+8=204 |